Lecture Plan For Digital Communication (EC-602)

Faculty :	Mohammad Arshad
Section :	EC-1
Webpage:	marshad.yolasite.com

Units	Lecture	Topic to Cover	Reference Book
Unit-1		Elements of Digital Communication and Information	
		Theory	
	Lecture-1	Model of a Digital Communication, Logarithmic measure	1
		of information System,	
	Lecture-2	Entropy and Information Rate,	1
	Lecture-3	Conditional Entropy and Redundancy, Source Coding	1
		theorem, Prefix coding and Kraft Inequality	
	Lecture-4	Shannon-Fanon and Huffman Coding for nth order	1
		expressions	
	Lecture-5	Maximum entropy of a continuous source(with Gaussian	1
		distribution), Entropy of band limited white Gaussian	
		noise	
	Lecture-6	Mutual information & channel capacity of a discrete	1
		memoryless channel, continous AWGN channel	
	Lecture-7	Continous AWGN channel, channel coding theorem,	1
		Hartely-Shannon law	
	Lecture-8	Hartely-Shannon law	1
Unit-2		Waveform coding techniques	
	Lecture-1	Discretization in time and amplitude, Linear quantizer	1
	Lecture-2	Noise, power calculation, signal to quantization ratio	1
	Lecture-3	Non uniform quantizer, A-law, µ-law	1
	Lecture-4	Compounding, encoding, PCM, bandwidth of PCM	1
	Lecture-5	Differential pulse code modulation, delta modulation,	1
		idling noise and slope overload	
	Lecture-6	Adaptive delta modulation, adaptive DPCM, comparison	1
		of PCM & DM	
	Lecture-7	Fundamentals of Time Division Multiplexing, Electronic	1
		Commutator	
	Lecture-8	Bit, Byte Interleaving T1 Carrier System, Synchronization	1
		and Signaling of T1, M12 multiplexer.	
Unit-3		Digital Base Baseband Transmission	
	Lecture-1	Line Coding and Its Properties, NRZ & RZ Types,	1,3
		Signalling Format For Unipolar, Quiz-1	
	Lecture-2	Polar, Bipolar(AMI) & Manchester Coding and Their	1,3
		Power Spectra (No Derivation) HDB & BBZS signaling	
	Lecture-3	ISI, Nyquist Criterion For Zero ISI & Raised Cosine	1
		Spectrum	
	Lecture-4	Matched Filter Receiver, Derivation of Its Impulse	1
		Response, Peak Pulse Signal to Noise Ratio.	

	Lecture-5	Peak Pulse Signal to Noise Ratio of Matched Filter Receiver	1
	Lecture-6	Correlation Detector Decision threshold for Unipolar Signal	1
	Lecture-7	Error Probability for unipolar Signalling	1
	Lecture-8	Error Probability for unipolar Signalling, Quiz-II	1
Unit-4		Digital Modulation Technique	
	Lecture-1	Types of Digital ModulationS, Wave forms for Amplitude, Frequency and Phase Shift Keying	1
	Lecture-2	Gram-Schmitt Orthogonalization Procedure, detection of known signals in noise, maximum likelihood detector	1
	Lecture-3	Method of Generation and Detection of Coherent & Non- Coherent Binary ASK signals	1
	Lecture-4	Method of Generation and Detection of Coherent & Non- Coherent Binary PSK signals	1
	Lecture-5	Method of Generation and Detection of Coherent & Non- Coherent Binary FSK signals	1
	Lecture-6	Differential Phase Shift Keying, QPSK & MSK	1
	Lecture-7	Probability of Error and Comparison of Various Digital Modulation Techniques	1
	Lecture-8	Probability of Error and Comparison of Various Digital Modulation Techniques	1
Unit-5		Error Control Coding	
	Lecture-1	Error Free Communication Over Noise Channel, Hamming sphere, Hamming distance and Hamming bound	1
	Lecture-2	Relation Between Minimum Distance and error detecting & Correcting Capability	1
	Lecture-3	Linear Block Codes, encoding and syndrome decoding	1
	Lecture-4	Cyclic codes, Encoder and Decoder For systematic Cyclic Codes,	1
	Lecture-5	Convolution codes	1
	Lecture-6	Code Tree and Trellis Diagram	1
	Lecture-7	Viterbi and Sequential Decoding	1
	Lecture-8	Burst error detection and correction	1

Text Book:

- 1. Digital Communication Systems: Haykin Simon, John Wiley.
- 2. Communication Systems: Haykin Simon, John Wiley
- 3. Modern Digital & Analog Communication Systems: Lathi, B.P Oxford University Press
- 4. Analog & Digital Communication Systems: Singh R.P. & Sapre S.D. Tata McGraw-Hill
- 5. Digital Communication: Prokis, Tata McGraw-Hill